Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.357
Filtrar
1.
J Conserv Dent Endod ; 27(3): 227-232, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38634023

RESUMO

Pulpitis is a special disease of dental pulp. It causes localized inflammation, due to various inflammatory mediators such as cytokines and chemokines. These inflammatory mediators are responsible for various reparative and resorptive processes in the dental pulp. The balance between these processes ultimately determines the viability of the tooth. Due to the important properties of various inflammatory markers, the correlation of cytokinin gene expression in various stages of inflammation becomes necessary to focus on. Several studies in the past have focused on the importance of such correlation to help in diagnostic applications. The nature of these inflammatory mediators can help us in diagnostic evaluation. Several attempts have been made to focus on these associations so that it can assist in making clinical decisions effectively. The data available are vast but are the most neglected topic. This review article briefly outlines and summarizes the importance of various inflammatory mediators such as cytokinin and chemokines in various pathways of pulpal and periapical inflammation in explanatory and diagrammatic forms. Knowledge gained about pulpal inflammatory response may aid in understanding the molecular level of inflammatory pulpal and periapical diseases, which shall modify our future diagnostic modalities. Several medicaments are used in the treatment of minimal to advanced dental caries which leads to periapical infections. Thorough understanding of these medicaments can resolve secondary infection and can improve the prognosis of the treated tooth.

2.
Front Immunol ; 15: 1227355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655254

RESUMO

Preconditioning with lipopolysaccharide (LPS) induces neuroprotection against subsequent cerebral ischemic injury, mainly involving innate immune pathways. Microglia are resident immune cells of the central nervous system (CNS) that respond early to danger signals through memory-like differential reprogramming. However, the cell-specific molecular mechanisms underlying preconditioning are not fully understood. To elucidate the distinct molecular mechanisms of preconditioning on microglia, we compared these cell-specific proteomic profiles in response to LPS preconditioning and without preconditioning and subsequent transient focal brain ischemia and reperfusion, - using an established mouse model of transient focal brain ischemia and reperfusion. A proteomic workflow, based on isolated microglia obtained from mouse brains by cell sorting and coupled to mass spectrometry for identification and quantification, was applied. Our data confirm that LPS preconditioning induces marked neuroprotection, as indicated by a significant reduction in brain infarct volume. The established brain cell separation method was suitable for obtaining an enriched microglial cell fraction for valid proteomic analysis. The results show a significant impact of LPS preconditioning on microglial proteome patterns by type I interferons, presumably driven by the interferon cluster regulator proteins signal transducer and activator of transcription1/2 (STAT1/2).


Assuntos
Lipopolissacarídeos , Microglia , Proteoma , Proteômica , Animais , Microglia/metabolismo , Microglia/imunologia , Camundongos , Proteômica/métodos , Masculino , Isquemia Encefálica/metabolismo , Isquemia Encefálica/imunologia , Precondicionamento Isquêmico/métodos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
J Neuroimmune Pharmacol ; 19(1): 14, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642237

RESUMO

Microglia, the resident immune cells of the brain, regulate neuroinflammation which can lead to secondary neuronal damage and cognitive impairment under pathological conditions. Two of the many molecules that can elicit an inflammatory response from microglia are lipopolysaccharide (LPS), a component of gram-negative bacteria, and interferon gamma (IFNγ), an endogenous pro-inflammatory cytokine. We thoroughly examined the concentration-dependent relationship between LPS from multiple bacterial species and IFNγ in cultured microglia and macrophages. We measured the effects that these immunostimulatory molecules have on pro-inflammatory activity of microglia and used a battery of signaling inhibitors to identify the pathways that contribute to the microglial response. We found that LPS and IFNγ interacted synergistically to induce a pro-inflammatory phenotype in microglia, and that inhibition of JAK1/2 completely blunted the response. We determined that this synergistic action of LPS and IFNγ was likely dependent on JNK and Akt signaling rather than typical pro-inflammatory mediators such as NF-κB. Finally, we demonstrated that LPS derived from Escherichia coli, Klebsiella pneumoniae, and Akkermansia muciniphila can elicit different inflammatory responses from microglia and macrophages, but these responses could be consistently prevented using ruxolitinib, a JAK1/2 inhibitor. Collectively, this work reveals a mechanism by which microglia may become hyperactivated in response to the combination of LPS and IFNγ. Given that elevations in circulating LPS and IFNγ occur in a wide variety of pathological conditions, it is critical to understand the pharmacological interactions between these molecules to develop safe and effective treatments to suppress this process.


Assuntos
Interferon gama , Lipopolissacarídeos , Interferon gama/farmacologia , Lipopolissacarídeos/toxicidade , Microglia , Transdução de Sinais , Citocinas/metabolismo , NF-kappa B/metabolismo
4.
Life Sci ; 345: 122604, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580196

RESUMO

AIMS: Intestinal barrier dysfunction is the initial and propagable factor of sepsis in which acute kidney injury (AKI) has been considered as a common life-threatening complication. Our recent study identifies the regulatory role of Pellino1 in tubular death under inflammatory conditions in vitro. The objective of our current study is to explore the impact of Pellino1 on gut-kidney axis during septic AKI and uncover the molecular mechanism (s) underlying this process. MATERIALS AND METHODS: Immunohistochemistry (IHC) was conducted to evaluate Pellino1 and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) levels in renal biopsies from critically ill patients with a clinical diagnosis of sepsis. Functional and mechanistic studies were characterized in septic models of the Peli-knockout (Peli1-/-) mice by histopathological staining, enzyme-linked immunosorbent assay (ELISA), flow cytometry, immunofluorescence, biochemical detection, CRISPR/Cas9-mediated gene editing and intestinal organoid. KEY FINDINGS: Pellino1, together with NLRP3, are highly expressed in renal biopsies from critically ill patients diagnosed with sepsis and kidney tissues of septic mice. The Peli1-/- mice with sepsis become less prone to develop AKI and have markedly compromised NLRP3 activation in kidney. Loss of Peli1 endows septic mice refractory to intestinal inflammation, barrier permeability and enterocyte apoptosis that requires stimulator of interferons genes (STING) pathway. Administration of STING agonist DMXAA deteriorates AKI and mortality of septic Peli1-/- mice in the presence of kidney-specific NLRP3 reconstitution. SIGNIFICANCE: Our studies suggest that Pellino1 has a principal role in orchestrating gut homeostasis towards renal pathophysiology, thus providing a potential therapeutic target for septic AKI.


Assuntos
Injúria Renal Aguda , Sepse , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estado Terminal , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Sepse/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Front Hum Neurosci ; 18: 1352118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562226

RESUMO

COVID-19's effects on the human brain reveal a multifactorial impact on cognition and the potential to inflict lasting neuronal damage. Type I interferon signaling, a pathway that represents our defense against pathogens, is primarily affected by COVID-19. Type I interferon signaling, however, is known to mediate cognitive dysfunction upon its dysregulation following synaptopathy, microgliosis and neuronal damage. In previous studies, we proposed a model of outside-in dysregulation of tonic IFN-I signaling in the brain following a COVID-19. This disruption would be mediated by the crosstalk between central and peripheral immunity, and could potentially establish feed-forward IFN-I dysregulation leading to neuroinflammation and potentially, neurodegeneration. We proposed that for the CNS, the second-order mediators would be intrinsic disease-associated molecular patterns (DAMPs) such as proteopathic seeds, without the requirement of neuroinvasion to sustain inflammation. Selective vulnerability of neurogenesis sites to IFN-I dysregulation would then lead to clinical manifestations such as anosmia and cognitive impairment. Since the inception of our model at the beginning of the pandemic, a growing body of studies has provided further evidence for the effects of SARS-CoV-2 infection on the human CNS and cognition. Several preclinical and clinical studies have displayed IFN-I dysregulation and tauopathy in gene expression and neuropathological data in new cases, correspondingly. Furthermore, neurodegeneration identified with a predilection for the extended olfactory network furthermore supports the neuroanatomical concept of our model, and its independence from fulminant neuroinvasion and encephalitis as a cause of CNS damage. In this perspective, we summarize the data on IFN-I as a plausible mechanism of cognitive impairment in this setting, and its potential contribution to Alzheimer's disease and its interplay with COVID-19.

6.
Cell Commun Signal ; 22(1): 212, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566100

RESUMO

The pathogenesis of Parkinson's disease (PD) is strongly associated with neuroinflammation, and type I interferons (IFN-I) play a crucial role in regulating immune and inflammatory responses. However, the specific features of IFN in different cell types and the underlying mechanisms of PD have yet to be fully described. In this study, we analyzed the GSE157783 dataset, which includes 39,024 single-cell RNA sequencing results for five PD patients and six healthy controls from the Gene Expression Omnibus database. After cell type annotation, we intersected differentially expressed genes in each cell subcluster with genes collected in The Interferome database to generate an IFN-I-stimulated gene set (ISGs). Based on this gene set, we used the R package AUCell to score each cell, representing the IFN-I activity. Additionally, we performed monocle trajectory analysis, and single-cell regulatory network inference and clustering (SCENIC) to uncover the underlying mechanisms. In silico gene perturbation and subsequent experiments confirm NFATc2 regulation of type I interferon response and neuroinflammation. Our analysis revealed that microglia, endothelial cells, and pericytes exhibited the highest activity of IFN-I. Furthermore, single-cell trajectory detection demonstrated that microglia in the midbrain of PD patients were in a pro-inflammatory activation state, which was validated in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model as well. We identified transcription factors NFATc2, which was significantly up-regulated and involved in the expression of ISGs and activation of microglia in PD. In the 1-Methyl-4-phenylpyridinium (MPP+)-induced BV2 cell model, the suppression of NFATc2 resulted in a reduction in IFN-ß levels, impeding the phosphorylation of STAT1, and attenuating the activation of the NF-κB pathway. Furthermore, the downregulation of NFATc2 mitigated the detrimental effects on SH-SY5Y cells co-cultured in conditioned medium. Our study highlights the critical role of microglia in type I interferon responses in PD. Additionally, we identified transcription factors NFATc2 as key regulators of aberrant type I interferon responses and microglial pro-inflammatory activation in PD. These findings provide new insights into the pathogenesis of PD and may have implications for the development of novel therapeutic strategies.


Assuntos
Interferon Tipo I , Neuroblastoma , Doença de Parkinson , Camundongos , Animais , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doenças Neuroinflamatórias , Células Endoteliais/metabolismo , NF-kappa B/metabolismo , Análise de Célula Única , Camundongos Endogâmicos C57BL
7.
EMBO J ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658796

RESUMO

Type I interferons (IFN-I, including IFNß) and IFNγ produce overlapping, yet clearly distinct immunological activities. Recent data show that the distinctness of global transcriptional responses to the two IFN types is not apparent when comparing their immediate effects. By analyzing nascent transcripts induced by IFN-I or IFNγ over a period of 48 h, we now show that the distinctiveness of the transcriptomes emerges over time and is based on differential employment of the ISGF3 complex as well as of the second-tier transcription factor IRF1. The distinct transcriptional properties of ISGF3 and IRF1 correspond with a largely diverse nuclear protein interactome. Mechanistically, we describe the specific input of ISGF3 and IRF1 into enhancer activation and the regulation of chromatin accessibility at interferon-stimulated genes (ISG). We further report differences between the IFN types in altering RNA polymerase II pausing at ISG 5' ends. Our data provide insight how transcriptional regulators create immunological identities of IFN-I and IFNγ.

8.
MedComm (2020) ; 5(4): e531, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38617435

RESUMO

Pyrogallol, a natural polyphenol compound (1,2,3-trihydroxybenzene), has shown efficacy in the therapeutic treatment of disorders associated with inflammation. Nevertheless, the mechanisms underlying the protective properties of pyrogallol against influenza A virus infection are not yet established. We established in this study that pyrogallol effectively alleviated H1N1 influenza A virus-induced lung injury and reduced mortality. Treatment with pyrogallol was found to promote the expression and nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor gamma (PPAR-γ). Notably, the activation of Nrf2 by pyrogallol was involved in elevating the expression of PPAR-γ, both of which act synergistically to enhance heme oxygenase-1 (HO-1) synthesis. Blocking HO-1 by zinc protoporphyrin (ZnPP) reduced the suppressive impact of pyrogallol on H1N1 virus-mediated aberrant retinoic acid-inducible gene-I-nuclear factor kappa B (RIG-I-NF-κB) signaling, which thus abolished the dampening effects of pyrogallol on excessive proinflammatory mediators and cell death (including apoptosis, necrosis, and ferroptosis). Furthermore, the HO-1-independent inactivation of janus kinase 1/signal transducers and activators of transcription (JAK1/STATs) and the HO-1-dependent RIG-I-augmented STAT1/2 activation were both abrogated by pyrogallol, resulting in suppression of the enhanced transcriptional activity of interferon-stimulated gene factor 3 (ISGF3) complexes, thus prominently inhibiting the amplification of the H1N1 virus-induced proinflammatory reaction and apoptosis in interferon-beta (IFN-ß)-sensitized cells. The study provides evidence that pyrogallol alleviates excessive proinflammatory responses and abnormal cell death via HO-1 induction, suggesting it could be a potential agent for treating influenza.

9.
Urologiia ; (1): 10-16, 2024 Mar.
Artigo em Russo | MEDLINE | ID: mdl-38650400

RESUMO

INTRODUCTION: Chronic recurrent cystitis (CRC) is a complex multifaceted problem of modern uroinfectology. OBJECTIVE: To study the immunological parameters of urine in patients with chronic recurrent cystitis depending on the etiological factor. MATERIALS AND METHODS: The prospective study included 71 patients aged 20-45 years who had previously been diagnosed with recurrent lower urinary tract infection: chronic recurrent cystitis (CRC) during an exacerbation period. Based on the results of bacteriological and PCR studies of urine, scraping of the urethra and vagina, depending on the dominant etiological factor, the patients were divided into three groups: group 1 (n=30) - with papillomavirus CRC (PVI-CRC), group 2 (n=30) - with bacterial CRC (B - CRC), group 3 (n=11) - with candida CRC (C - CRC). Analysis of the assessment of immunological parameters of urine was carried out using an enzyme-linked immunosorbent assay (ELISA-BEST). RESULTS: Based on the results of an immunological study of urine in the study groups, characteristic specific changes in the level of interleukins and interferons were identified, which made it possible to determine a protocol for the differential diagnosis of CRC. CONCLUSIONS: Our study shows the advisability of testing interleukins in urine (IL-1 beta, IL-6, IL-8); these indicators can serve as scoring criteria in the differential diagnosis of CRC of various origins. CONCLUSIONS: , it is reasonable to study the level of IFN-2b and IFN; when identifying the functional inferiority of the IFN system in women with CRC, correction of the IFN system is necessary.


Assuntos
Cistite , Humanos , Feminino , Cistite/urina , Cistite/diagnóstico , Cistite/imunologia , Adulto , Pessoa de Meia-Idade , Diagnóstico Diferencial , Doença Crônica , Estudos Prospectivos , Recidiva , Interleucinas/urina , Infecções por Papillomavirus/urina , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/diagnóstico , Adulto Jovem , Interferons/urina
10.
Immunity ; 57(4): 718-730, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599167

RESUMO

The cGAS-STING intracellular DNA-sensing pathway has emerged as a key element of innate antiviral immunity and a promising therapeutic target. The existence of an innate immune sensor that can be activated by any double-stranded DNA (dsDNA) of any origin raises fundamental questions about how cGAS is regulated and how it responds to "foreign" DNA while maintaining tolerance to ubiquitous self-DNA. In this review, we summarize recent evidence implicating important roles for cGAS in the detection of foreign and self-DNA. We describe two recent and surprising insights into cGAS-STING biology: that cGAS is tightly tethered to the nucleosome and that the cGAMP product of cGAS is an immunotransmitter acting at a distance to control innate immunity. We consider how these advances influence our understanding of the emerging roles of cGAS in the DNA damage response (DDR), senescence, aging, and cancer biology. Finally, we describe emerging approaches to harness cGAS-STING biology for therapeutic benefit.


Assuntos
Nucleotidiltransferases , Transdução de Sinais , Nucleotidiltransferases/metabolismo , Imunidade Inata , DNA
11.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611871

RESUMO

Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are endogenous lipids that act as agonists of the peroxisome proliferator-activated receptor α (PPARα). Recently, an interest in the role of these lipids in malignant tumors has emerged. Nevertheless, the effects of OEA and PEA on human neuroblastoma cells are still not documented. Type I interferons (IFNs) are immunomodulatory cytokines endowed with antiviral and anti-proliferative actions and are used in the treatment of various pathologies such as different cancer forms (i.e., non-Hodgkin's lymphoma, melanoma, leukemia), hepatitis B, hepatitis C, multiple sclerosis, and many others. In this study, we investigated the effect of OEA and PEA on human neuroblastoma SH-SY5Y cells treated with IFNß. We focused on evaluating cell viability, cell proliferation, and cell signaling. Co-exposure to either OEA or PEA along with IFNß leads to increased apoptotic cell death marked by the cleavage of caspase 3 and poly-(ADP ribose) polymerase (PARP) alongside a decrease in survivin and IKBα levels. Moreover, we found that OEA and PEA did not affect IFNß signaling through the JAK-STAT pathway and the STAT1-inducible protein kinase R (PKR). OEA and PEA also increased the phosphorylation of p38 MAP kinase and programmed death-ligand 1 (PD-L1) expression both in full cell lysate and surface membranes. Furthermore, GW6471, a PPARα inhibitor, and the genetic silencing of the receptor were shown to lower PD-L1 and cleaved PARP levels. These results reveal the presence of a novel mechanism, independent of the IFNß-prompted pathway, by which OEA and PEA can directly impair cell survival, proliferation, and clonogenicity through modulating and potentiating the intrinsic apoptotic pathway in human SH-SY5Y cells.


Assuntos
Amidas , Endocanabinoides , Etanolaminas , Neuroblastoma , Ácidos Oleicos , Humanos , Neuroblastoma/tratamento farmacológico , Antígeno B7-H1 , Janus Quinases , PPAR alfa , Inibidores de Poli(ADP-Ribose) Polimerases , Fatores de Transcrição STAT , Transdução de Sinais , Apoptose , Ácidos Palmíticos/farmacologia
12.
Front Immunol ; 15: 1353012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571960

RESUMO

Background: Type I interferon (IFN-I) and IFN autoantibodies play a crucial role in controlling SARS-CoV-2 infection. The levels of these mediators have only rarely been studied in the alveolar compartment in patients with COVID-19 acute respiratory distress syndrome (CARDS) but have not been compared across different ARDS etiologies, and the potential effect of dexamethasone (DXM) on these mediators is not known. Methods: We assessed the integrity of the alveolo-capillary membrane, interleukins, type I, II, and III IFNs, and IFN autoantibodies by studying the epithelial lining fluid (ELF) volumes, alveolar concentration of protein, and ELF-corrected concentrations of cytokines in two patient subgroups and controls. Results: A total of 16 patients with CARDS (four without and 12 with DXM treatment), eight with non-CARDS, and 15 healthy controls were included. The highest ELF volumes and protein levels were observed in CARDS. Systemic and ELF-corrected alveolar concentrations of interleukin (IL)-6 appeared to be particularly low in patients with CARDS receiving DXM, whereas alveolar levels of IL-8 were high regardless of DXM treatment. Alveolar levels of IFNs were similar between CARDS and non-CARDS patients, and IFNα and IFNω autoantibody levels were higher in patients with CARDS and non-CARDS than in healthy controls. Conclusions: Patients with CARDS exhibited greater alveolo-capillary barrier disruption with compartmentalization of IL-8, regardless of DXM treatment, whereas systemic and alveolar levels of IL-6 were lower in the DXM-treated subgroup. IFN-I autoantibodies were higher in the BALF of CARDS patients, independent of DXM, whereas IFN autoantibodies in plasma were similar to those in controls.


Assuntos
COVID-19 , Interferon Tipo I , Síndrome do Desconforto Respiratório , Humanos , Citocinas , COVID-19/complicações , Interleucina-8 , Autoanticorpos , SARS-CoV-2 , Interleucina-6 , Síndrome do Desconforto Respiratório/etiologia
13.
Clin Immunol ; 263: 110202, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38575045

RESUMO

Celiac disease (CD) is an immune-driven disease characterized by tissue damage in the small intestine of genetically-susceptible individuals. We evaluated here a crucial immune regulatory pathway involving TYRO3, AXL, and MERTK (TAM) receptors and their ligands PROS1 and GAS6 in duodenal biopsies of controls and CD patients. We found increased GAS6 expression associated with downregulation of PROS1 and variable TAM receptors levels in duodenum tissue of CD patients. Interestingly, CD3+ lymphocytes, CD68+, CD11c+ myeloid and epithelial cells, showed differential expressions of TAM components comparing CD vs controls. Principal component analysis revealed a clear segregation of two groups of CD patients based on TAM components and IFN signaling. In vitro validation demonstrated that monocytes, T lymphocytes and epithelial cells upregulated TAM components in response to IFN stimulation. Our findings highlight a dysregulated TAM axis in CD related to IFN signaling and contribute to a deeper understanding of the pathophysiology of CD.

14.
Front Immunol ; 15: 1347676, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590519

RESUMO

The gut-lung axis is critical during viral respiratory infections such as influenza. Gut dysbiosis during infection translates into a massive drop of microbially produced short-chain fatty acids (SCFAs). Among them, butyrate is important during influenza suggesting that microbiome-based therapeutics targeting butyrate might hold promises. The butyrate-producing bacterium Faecalibacterium duncaniae (formerly referred to as F. prausnitzii) is an emerging probiotic with several health-promoting characteristics. To investigate the potential effects of F. duncaniae on influenza outcomes, mice were gavaged with live F. duncaniae (A2-165 or I-4574 strains) five days before infection. Supplementation of F. duncaniae was associated with less severe disease, a lower pulmonary viral load, and lower levels of lung inflammation. F. duncaniae supplementation impacted on gut dysbiosis induced by infection, as assessed by 16S rRNA sequencing. Interestingly, F. duncaniae administration was associated with a recovery in levels of SCFAs (including butyrate) in infected animals. The live form of F. duncaniae was more potent that the pasteurized form in improving influenza outcomes. Lastly, F. duncaniae partially protected against secondary (systemic) bacterial infection. We conclude that F. duncaniae might serve as a novel next generation probiotic against acute viral respiratory diseases.


Assuntos
Influenza Humana , Probióticos , Camundongos , Animais , Humanos , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Ácidos Graxos Voláteis , Butiratos , Faecalibacterium/genética
15.
Immunol Rev ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38465724

RESUMO

Over the past decade, there has been a surge in discoveries of how metabolic pathways regulate immune cell function in health and disease, establishing the field of immunometabolism. Specifically, pathways such as glycolysis, the tricarboxylic acid (TCA) cycle, and those involving lipid metabolism have been implicated in regulating immune cell function. Viral infections cause immunometabolic changes which lead to antiviral immunity, but little is known about how metabolic changes regulate interferon responses. Interferons are critical cytokines in host defense, rapidly induced upon pathogen recognition, but are also involved in autoimmune diseases. This review summarizes how metabolic change impacts interferon production. We describe how glycolysis, lipid metabolism (specifically involving eicosanoids and cholesterol), and the TCA cycle-linked intermediates itaconate and fumarate impact type I interferons. Targeting these metabolic changes presents new therapeutic possibilities to modulate type I interferons during host defense or autoimmune disorders.

16.
Sci Rep ; 14(1): 5731, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459088

RESUMO

Triple-negative breast cancer (TNBC) is one of the most aggressive types of cancer. Despite decades of intense investigation, treatment options remain limited, and rapid recurrence with distant metastases remains a significant challenge. Cancer cell-intrinsic production of cytokines such as type I interferons (IFN-I) is a known potent modulator of response to therapy in many cancers, including TNBC, and can influence therapeutic outcome. Here, we report that, in TNBC systems, the aryl hydrocarbon receptor (AhR) suppresses IFN-I expression via inhibition of STImulator of Interferon Genes (STING), a key mediator of interferon production. Intratumoral STING activity is essential in mediating the efficacy of PARP inhibitors (PARPi) which are used in the treatment of cancers harboring BRCA1 deficiency. We find that, in TNBC cells, PARPi treatment activates AhR in a BRCA1 deficiency-dependent manner, thus suggesting the presence of a negative feedback loop aimed at modulating PARPi efficacy. Importantly, our results indicate that the combined inhibition of PARP and AhR is superior in elevating IFN-I expression as compared to PARPi-alone. Thus, AhR inhibition may allow for enhanced IFN-I production upon PARPi in BRCA1-deficient breast cancers, most of which are of TNBC origin, and may represent a therapeutically viable strategy to enhance PARPi efficacy.


Assuntos
Interferon Tipo I , Neoplasias de Mama Triplo Negativas , Humanos , Proteína BRCA2/genética , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
17.
J Clin Immunol ; 44(3): 80, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38462559

RESUMO

OBJECTIVE: We sought to explore the prevalence of type I interferon-neutralizing antibodies in a Chinese cohort and its clinical implications during the Omicron variant wave of SARS-CoV-2. METHODS: Type I interferon (IFN) autoantibodies possessing neutralizing capabilities were identified using luciferase assays. The capacity of the autoantibodies for in vitro interference with antiviral activity of IFN was assessed by using a SARS-CoV-2 replicon system. An analysis of the demographic and clinical profiles of patients exhibiting neutralizing antibodies was also conducted. RESULTS: In this cohort, 11.8% of severe/critical cases exhibited the existence of type I IFN-neutralizing antibodies, specifically targeting IFN-α2, IFN-ω, or both, with an elderly male patient tendency. Notably, these antibodies exerted a pronounced inhibitory effect on the antiviral activity of IFN against SARS-CoV-2 under controlled in vitro conditions. Furthermore, a noteworthy correlation was discerned between the presence of these neutralizing antibodies and critical clinical parameters, including C-reactive protein (CRP) levels, D-dimer levels, and lymphocyte counts. CONCLUSION: The presence of type I IFN-neutralizing antibodies is a pervasive risk factor for severe/critical COVID-19 in the Chinese population.


Assuntos
COVID-19 , Interferon Tipo I , Idoso , Humanos , Masculino , Autoanticorpos , COVID-19/epidemiologia , SARS-CoV-2 , Prevalência , China/epidemiologia , Anticorpos Neutralizantes , Antivirais
18.
Front Immunol ; 15: 1327784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455040

RESUMO

Type I interferons (IFN-I) are key immune messenger molecules that play an important role in viral defense. They act as a bridge between microbe sensing, immune function magnitude, and adaptive immunity to fight infections, and they must therefore be tightly regulated. It has become increasingly evident that thymic irregularities and mutations in immune genes affecting thymic tolerance can lead to the production of IFN-I autoantibodies (autoAbs). Whether these biomarkers affect the immune system or tissue integrity of the host is still controversial, but new data show that IFN-I autoAbs may increase susceptibility to severe disease caused by certain viruses, including SARS-CoV-2, herpes zoster, and varicella pneumonia. In this article, we will elaborate on disorders that have been identified with IFN-I autoAbs, discuss models of how tolerance to IFN-Is is lost, and explain the consequences for the host.


Assuntos
Autoanticorpos , Interferon Tipo I , Timo , Herpesvirus Humano 3
19.
Artigo em Inglês | MEDLINE | ID: mdl-38494094

RESUMO

BACKGROUND: Single nucleotide polymorphisms (SNPs) in genes on chromosome 17q12-q21 are associated with childhood-onset asthma and rhinovirus-induced wheeze. There are few mechanistic data linking chromosome 17q12-q21 to wheezing illness. OBJECTIVE: We investigated whether 17q12-q21 risk alleles were associated with impaired interferon responses to rhinovirus. METHODS: In a population-based birth cohort of European ancestry, we stimulated peripheral blood mononuclear cells with rhinovirus A1 (RV-A1) and rhinovirus A16 (RV-A16) and measured IFN and IFN-induced C-X-C motif chemokine ligand 10 (aka IP10) responses in supernatants. We investigated associations between virus-induced cytokines and 6 SNPs in 17q12-q21. Bayesian profile regression was applied to identify clusters of individuals with different immune response profiles and genetic variants. RESULTS: Five SNPs (in high linkage disequilibrium, r2 ≥ 0.8) were significantly associated with RV-A1-induced IFN-ß (rs9303277, P = .010; rs11557467, P = .012; rs2290400, P = .006; rs7216389, P = .008; rs8079416, P = .005). A reduction in RV-A1-induced IFN-ß was observed among individuals with asthma risk alleles. There were no significant associations for RV-A1-induced IFN-α or CXCL10, or for any RV-A16-induced IFN/CXCL10. Bayesian profile regression analysis identified 3 clusters that differed in IFN-ß induction to RV-A1 (low, medium, high). The typical genetic profile of the cluster associated with low RV-A1-induced IFN-ß responses was characterized by a very high probability of being homozygous for the asthma risk allele for all SNPs. Children with persistent wheeze were almost 3 times more likely to be in clusters with reduced/average RV-A1-induced IFN-ß responses than in the high immune response cluster. CONCLUSIONS: Polymorphisms on chromosome 17q12-q21 are associated with rhinovirus-induced IFN-ß, suggesting a novel mechanism-impaired IFN-ß induction-links 17q12-q21 risk alleles with asthma/wheeze.

20.
Brain Sci ; 14(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38539631

RESUMO

Multiple sclerosis (MS) is a demyelinating central nervous system disease that leads to neurological disability. Brain-derived neurotrophic factors (BDNFs) are neurotrophins involved in neurodegenerative disorders. This study analysed the relationship between serum BDNF, neurological disability and different MS treatments. We included 63 people with MS (PwMS), with relapsing-remitting MS or clinically isolated syndrome, and 16 healthy controls (HCs). We analysed the serum levels of BDNF and MS specific disability tests (Expanded Disability Status Scale, timed 25-foot walk test, nine-hole peg test), at baseline (V0) and after one year of interferon beta1a or teriflunomide treatment (V1). Baseline BDNF values were not different between the PwMS and HCs (p = 0.85). The BDNF levels were higher in PwMS vs. HCs after treatment (p = 0.003). BDNF was not related to last-year relapses or by the disease duration (all p > 0.05). The overall values for the PwMS decreased after one year (p < 0.001). Both treatments implied a similar reduction. BDNF was not related to neurological disability (p > 0.05). BDNF values were not influenced by the lesion burden, active lesions, or new lesions on MRI (p > 0.05). In our cohort, the PwMS had higher BDNF levels compared to the HCs after one year of treatment. BDNF was not related to clinical or paraclinical disease severity signs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...